A Characterization of Schauder Frames Which Are Near-schauder Bases

نویسندگان

  • RUI LIU
  • BENTUO ZHENG
چکیده

A basic problem of interest in connection with the study of Schauder frames in Banach spaces is that of characterizing those Schauder frames which can essentially be regarded as Schauder bases. In this paper, we study this problem using the notion of a minimal-associated sequence space and a minimal-associated reconstruction operator for Schauder frames. We prove that a Schauder frame is a near-Schauder basis if and only if the kernel of the minimal-associated reconstruction operator contains no copy of c0. In particular, a Schauder frame of a Banach space with no copy of c0 is a near-Schauder basis if and only if the minimal-associated sequence space contains no copy of c0. In these cases, the minimal-associated reconstruction operator has a finite dimensional kernel and the dimension of the kernel is exactly the excess of the Schauder frame.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weaving Schauder frames

We extend the concept of weaving Hilbert space frames to the Banach space setting. Similar to frames in a Hilbert space, we show that for any two approximate Schauder frames for a Banach space, every weaving is an approximate Schauder frame if and only if there is a uniform constant C ≥ 1 such that every weaving is a C-approximate Schauder frame. We also study weaving Schauder bases, where it i...

متن کامل

Perturbations of Frames

In this paper, we give some sufficient conditions under which perturbations preserve Hilbert frames and near-Riesz bases. Similar results are also extended to frame sequences, Riesz sequences and Schauder frames. It is worth mentioning that some of our perturbation conditions are quite different from those used in the previous literature on this topic.

متن کامل

Gabor Schauder Bases and the Balian–low Theorem

The Balian–Low Theorem is a strong form of the uncertainty principle for Gabor systems which form orthonormal or Riesz bases for L(R). In this paper we investigate the Balian–Low Theorem in the setting of Schauder bases. We prove that new weak versions of the Balian–Low Theorem hold for Gabor Schauder bases, but we constructively demonstrate that several variants of the BLT can fail for Gabor S...

متن کامل

Density of Frames and Schauder Bases of Windowed Exponentials

This paper proves that every frame of windowed exponentials satisfies a Strong Homogeneous Approximation Property with respect to its canonical dual frame, and a Weak Homogeneous Approximation Property with respect to an arbitrary dual frame. As a consequence, a simple proof of the Nyquist density phenomenon satisfied by frames of windowed exponentials with one or finitely many generators is ob...

متن کامل

Upper and Lower Estimates for Schauder Frames and Atomic Decompositions

We prove that a Schauder frame for any separable Banach space is shrinking if and only if it has an associated space with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and boundedly complete if and only if it has a reflexive associated space. To obtain these results, we prove that the upper and lower estimate theorems for finite dimensional decompositi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009